J river remote
Author: m | 2025-04-24
J River 제이리버에 J Remote 제이리모트 연결하기 몇달 전부터 푸바 대신 제이리버 J River를 사용중입니다.피오당 공구를 이용하여 blog.naver.com. 제이리버 J River 를 깔았으니 짝꿍으로 제이리모트 J Remote 를 깔아봅니다. Downloaded J River again on that computer. Same problem. J River is not accessible anymore. Tried on another computer where J River is installed ( Windows 7.1 - J River works normally) but tried to access with J Remote (Samsung tab). Access key added. Just got a black screen with the message J River is stopped - Report or ok as choice.
J River for Windows 10 J Remote
17–25.Article Google Scholar Grunwald, S., & Qi, C. (2006). GIS-based water quality modelling in the Sandusky watershed, Ohio, USA. JAWRA Journal of the American Water Resources Association, 42(4), 957–973.Article CAS Google Scholar Guéguen, C., Guo, L., & Tanaka, N. (2005). Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean. Continental Shelf Research, 25(10), 1195–1207.Article Google Scholar Guo, H., Huang, J. J., Chen, B., Guo, X., & Singh, V. P. (2021). A machine learning-based strategy for estimating nonoptically active water quality parameters using Sentinel-2 imagery. International Journal of Remote Sensing, 42(5), 1841–1866.Article Google Scholar Gupta, N., Aktaruzzaman, M., & Wang, C. (2012). GIS-based assessment and Management of Nitrogen and Phosphorus in Rönneå River Catchment, Sweden. Journal of the Indian Society of Remote Sensing, 40(3), 457–466. Google Scholar Gurlin, D., Gitelson, A. A., & Moses, W. J. (2011). Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115(12), 3479–3490.Article Google Scholar Hameed, H. (2010). GIS as a tool for classification Lake’s acidification-and eutrophication degree. Mesopotamian Journal of Marine Science, 25(1), 53–64.Article Google Scholar Hiscock, J. G., Thourot, C. S., & Zhang, J. (2003). Phosphorus budget – Land use relationships for the northern Lake Okeechobee watershed, Florida. Ecological Engineering, 21(1), 63–74. Google Scholar Howartw, R. W., Billen, G., Swaney, D., & Townsend, A. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35(1), 75–139.Article Google Scholar Hu, C., Muller-karger, F. E., Judd, C., Carder, K. L., Kelble, C., Johns, E., & Heil, C. A. (2005). Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sensing of Environment, 97, 311–321. Google Scholar Izadi, M., Sultan, M., El Kadiri, R., Ghannadi, A., & Abdelmohsen, K. (2021). A remote sensing and machine learning-based approach to forecast the onset of harmful algal bloom. Remote Sensing, 13(19). A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D., & Ross, A. (2016). Integrated groundwater management: Concepts, approaches and challenges. Integrated Groundwater Management: Concepts, Approaches and Challenges, 1–762. M. A., & Jha, M. K. (2022). A novel GIS-based modelling approach for evaluating aquifer susceptibility to anthropogenic contamination. Sustainability, 14(8), 4538.Article CAS Google Scholar Jeong, S., Yeon, K., Hur, Y., & Oh, K. (2010). Salinity intrusion characteristics analysis using EFDC model in the downstream of Geum River. Journal of Environmental Sciences, 22(6), 934–939. Google Scholar Karul, C., Soyupak, S., Çilesiz, A. F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modelling. Ecological Modelling, 134(2–3), 145–152. CAS Google Scholar KC, A., Chalise, A., Parajuli, D., Dhital, N., Shrestha, S., & Kandel, T. (2019). Surface water quality assessment using remote sensing, GIS and artificial intelligence. Technical Journal, 1(1), 113–122.Article Google Scholar Kurup, R. G., Hamilton, D. P., & Phillips, R. L. (2000). Comparison of two 2-dimensional, laterally averaged hydrodynamic model applications to the Swan River Estuary. Mathematics and
J River 제이리버에 J Remote 제이리모트 연결하기 : 네이버 블로그
And water pollutants in mining area. Environmental Science and Pollution Research, 29(21), 31486–31500. CAS Google Scholar Seo, D., Kim, M., & Ahn, J. H. (2012). Prediction of chlorophyll-a changes due to weir constructions in the Nakdong River using EFDC-WASP modelling. Environmental Engineering Research, 17(2), 95–102.Article Google Scholar Shabani, A., Woznicki, S. A., Mehaffey, M., Butcher, J., Wool, T. A., & Whung, P. Y. (2021). A coupled hydrodynamic (HEC-RAS 2D) and water quality model (WASP) for simulating flood-induced soil, sediment, and contaminant transport. Journal of Flood Risk Management, 14(4). Y., & Zhu, D. Z. (2001). Techniques for controlling total suspended solids in stormwater runoff. Canadian Water Resources Journal, 26(3), 359–375.Article Google Scholar Shen, L., Xu, H., & Guo, X. (2012). Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors (Switzerland), 12(6), 7778–7803. CAS Google Scholar Sheng, Z. (2013). Impacts of groundwater pumping and climate variability on groundwater availability in the Rio Grande Basin. Ecosphere, 4(1), 1–25. Google Scholar Singh, S. K., Srivastava, P. K., Pandey, A. C., & Gautam, S. K. (2013). Integrated assessment of groundwater influenced by a Confluence River system: Concurrence with remote sensing and geochemical modelling. Water Resources Management, 27(12), 4291–4313. Google Scholar Skogen, M. D., Svendsen, E., Berntsen, J., Aksnes, D., & Ulvestad, K. B. (1995). Modelling the primary production in the North Sea using a coupled three-dimensional physical-chemical-biological ocean model. Estuarine, Coastal and Shelf Science, 41(5), 545–565. CAS Google Scholar Slonecker, E. T., Jones, D. K., & Pellerin, B. A. (2016). The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM). Marine Pollution Bulletin, 107(2), 518–527.Article CAS Google Scholar Stigter, T. Y., Ribeiro, L., & Carvalho Dill, A. M. M. (2006). Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies – Two Portuguese case studies. Journal of Hydrology, 327(3–4), 578–591. Google Scholar Stumpf, R. P., Culver, M. E., Tester, P. A., Tomlinson, M., Kirkpatrick, G. J., Pederson, B. A., Truby, E., Ransibrahmanakul, V., & Soracco, M. (2003). Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae, 2(October 2001), 147–160.Article CAS Google Scholar Stumpf, R. P., & Tomlinson, M. C. (2005). Use of remote sensing in monitoring and forecasting of harmful algal blooms. Remote Sensing of the Coastal Oceanic Environment, 5885, 58850I. Google Scholar Tamene, L., Park, S. J., Dikau, R., & Vlek, P. L. G. (2006). Reservoir siltation in the semi-arid highlands of northern Ethiopia: Sediment yield–catchment area relationship and a semi-quantitative approach for predicting sediment yield. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(11), 1364–1383.Article Google Scholar Tang, D. L., Kawamura, H., Hai, D. N., & Takahashi, W. (2004). Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. Journal of Geophysical Research: Oceans, 109(3), 1–7. Google Scholar Tiwari, S., Babbar, R., & Kaur, G. (2018). Performance evaluation of two ANFIS models for predicting water quality index of River SatlujJ River Remote Subtitle Selection - AVS Forum
Agric Water Manage 182:67–76. Google Scholar Saaty TL (1988) Some Mathematical topics in the Analytic Hierarchy process. In: Mitra G, Greenberg HJ, Lootsma FA et al (eds) Mathematical models for decision support. Springer, Berlin, Heidelberg, pp 89–107Chapter Google Scholar Sandonnini J, Del Pilar Ruso Y, Cortés Melendreras E et al (2021) The emergent fouling population after severe eutrophication in the Mar Menor coastal lagoon. Reg Stud Mar Sci 44:101720. Google Scholar Sarah S, Ahmed S, Violette S, de Marsily G (2021) Groundwater sustainability challenges revealed by quantification of contaminated groundwater volume and aquifer depletion in hard rock aquifer systems. J Hydrol 597:126286. Google Scholar Schmid T, Koch M, Gumuzzio J (2005) Multisensor approach to determine changes of wetland characteristics in semiarid environments (central Spain). IEEE Trans Geosci Remote Sens 43:2516–2525. Google Scholar Senarathne S, Jayawardana JMCK, Edirisinghe EANV, Chandrajith R (2021) Geochemical and isotope evidence for groundwater mineralization in a semi-arid river basin, Sri Lanka. Appl Geochem 124:104799. CAS Google Scholar Senent-Aparicio J, Pérez-Sánchez J, García-Aróstegui JL et al (2015) Evaluating Groundwater Management Sustainability under Limited Data availability in Semiarid zones. Water 7:4305–4322. CAS Google Scholar Senent-Aparicio J, López-Ballesteros A, Nielsen A, Trolle D (2021) A holistic approach for determining the hydrology of the mar menor coastal lagoon by combining hydrological & hydrodynamic models. J Hydrol 603:127150. Google Scholar Shah SHIA, Yan J, Ullah I et al (2021) Classification of Aquifer vulnerability by using the DRASTIC Index and Geo-Electrical Techniques. Water 13:2144. Google Scholar Singh D, Karambelas A, Chhatre A. J River 제이리버에 J Remote 제이리모트 연결하기 몇달 전부터 푸바 대신 제이리버 J River를 사용중입니다.피오당 공구를 이용하여 blog.naver.com. 제이리버 J River 를 깔았으니 짝꿍으로 제이리모트 J Remote 를 깔아봅니다. Downloaded J River again on that computer. Same problem. J River is not accessible anymore. Tried on another computer where J River is installed ( Windows 7.1 - J River works normally) but tried to access with J Remote (Samsung tab). Access key added. Just got a black screen with the message J River is stopped - Report or ok as choice.J. River MEDIA JUKEBOX 12 Free Download. J. River, Inc
(an Analytical Review); Asia Disaster Reduction Center: Kobe, Japan, 2009; p. 23. [Google Scholar]Ali, S.; Cheema, M.J.M.; Waqas, M.M.; Waseem, M.; Leta, M.K.; Qamar, M.U.; Awan, U.K.; Bilal, M.; Rahman, M.H.U. Flood Mitigation in the Transboundary Chenab River Basin: A Basin-Wise Approach from Flood Forecasting to Management. Remote Sens. 2021, 13, 3916. [Google Scholar] [CrossRef]El Gayar, A.; Hamed, Y. Climate change and water resources management in Arab countries. In Proceedings of the Euro-Mediterranean Conference for Environmental Integration, Sousse, Tunisia, 20–25 November 2017; pp. 89–91. [Google Scholar]Abdullah, M.; Al-Ansari, N.; Adamo, N.; Sissakian, V.K.; Laue, J. Floods and Flood Protection in Mesopotamia. J. Earth Sci. Geotech. Eng. 2020, 10, 155–173. [Google Scholar]Besser, H.; Hamed, Y. Environmental impacts of land management on the sustainability of natural resources in Oriental Erg Tunisia, North Africa. Environ. Dev. Sustain. 2021, 23, 11677–11705. [Google Scholar] [CrossRef]Hamdan, A.N.A.; Almuktar, S.; Scholz, M. Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River Catchment, Northern Iraq. Hydrology 2021, 8, 58. [Google Scholar] [CrossRef]Zin, W.W.; Kawasaki, A.; Takeuchi, W.; San, Z.M.L.T.; Htun, K.Z.; Aye, T.H.; Win, S. Flood hazard assessment of Bago River Basin, Myanmar. J. Disaster Res. 2018, 13, 14–21. [Google Scholar]Ameera, M.A. Hydraulic Model Development using HEC-RAS and Determination of Manning Roughness Value for Shatt Al-Rumaith. Muthanna J. Eng. Technol. 2016, 4, 9–13. [Google Scholar]Marina, I.; Oana, E.C. The Use Of HEC–RAS Modeling in Flood Risk Analysis; Carol I, No. 20; Alexandru Ioan Cuza" University, Faculty of Geography: Iași, Romania, 2015; pp. 315–322. Available online: (accessed onJ. River Media Jukebox 8.0 review: J. River Media - CNET
Scholar]Abdelkarim, A. The effect of spatial changes of urban growth and land uses on increasing the risk of floods in the city of Saudi Arabia: A case study of the city of Hail using geographic information systems (GIS) and remote sensing (RS). Arab. J. Geogr. Inf. Syst. 2013, 6, 1–103. [Google Scholar]El Adlouni, S.; Bobée, B. Hydrological Frequency Analysis Using HYFRAN-PLUS Software. 2015, pp. 1–71. Available online: (accessed on 5 June 2022).Environmental Modeling Research Laboratory of Brigham Young University. Watershed Modeling System (WMS) v 8.1: Tutorials; Environmental Modeling Research Laboratory of Brigham Young University: Provo, UT, USA, 2004. [Google Scholar]Matthew, J.F. Hydrologic Modeling System HEC-HMS, Quick Start Guide; U.S Army Corps of Engineers, Hydrologic Engineering Center (HEC): St. Davis, CA, USA, 2013; Volume 4, 50p. [Google Scholar]Feldman, A.D. Hydrologic Modeling System HEC-HMS; Hydrologic Engineering Center (HEC): St. Davis, CA, USA, 2008; 155p. [Google Scholar]US Army Corps of Engineers (USACE). River Analysis System HEC-RAS: Applications Guide; Hydrologic Engineering Center (HEC): St. Davis, CA, USA, 2010. [Google Scholar]Dragan, V.K.; Ivana, B.I.; Dejan, M.C.; Gordana, O.M. The initial analysis of the river Ibar temperature downstream of the lake gazivode. Therm. Sci. 2014, 18, 73–80. [Google Scholar]Sunil, K.; Sayali, K.; Vrushali, B.; Akshada, W. Flood modeling of river godavari using hec-ras. Int. J. Res. Eng. Technol. 2014, 3, 81–87. [Google Scholar]Raymond, D.; Soussou, S.; Seidou, K.; Issa, L.; Samo, D.; Mousse, L.; Didier, M. Calibration of HEC-RAS Model for One Dimensional Steady Flow Analysis - A Case of Senegal River Estuary Downstream Diama Dam.J. River Media Jukebox 8.0 review: J. River Media Jukebox 8.0
Computers in Simulation, 51(6), 627–638. Google Scholar Landsberg, J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2), 113–390.Article Google Scholar Lee, J. H. W., Huang, Y., Dickman, M., & Jayawardena, A. W. (2003). Neural network modelling of coastal algal blooms. Ecological Modelling, 159(2–3), 179–201. CAS Google Scholar Lehning, D. W., Corradini, K. J., Petersen, G. W., Nizeyimana, E., Hamlett, J. M., Robillard, P. D., & Day, R. L. (2002). A comprehensive GIS-based modelling approach for predicting nutrient loads in watersheds. Journal of Spatial Hydrology, 2(2). Google Scholar Lei, B., Huang, S., Qiao, M., Li, T., & Wang, Z. (2008). Prediction of the environmental fate and aquatic ecological impact of nitrobenzene in the Songhua River using the modified AQUATOX model. Journal of Environmental Sciences, 20(7), 769–777. CAS Google Scholar Li, L., Wu, J., Wang, X., Zhou, H. L., & Fang, B. (2007). Application of the three-dimensional environmental fluid dynamics code model in Manwan reservoir. New Trends in Fluid Mechanics Research, 414–414. D. S. (1987). Turbidity as a water quality standard for salmonid habitats in Alaska. North American Journal of Fisheries Management, 7(1), 34–45.2.0.CO;2" data-track-item_id="10.1577/1548-8659(1987)72.0.CO;2" data-track-action="Article reference" data-track-value="Article reference" href=" aria-label="Article reference 52" data-doi="10.1577/1548-8659(1987)72.0.CO;2">Article Google Scholar Lu, F., Zhang, H., & Liu, W. (2020). Development and application of a GIS-based artificial neural network system for water quality prediction: A case study at the Lake Champlain area. Journal of Oceanology and Limnology, 38, 1835–1845.Article Google Scholar Mathew, M. M., Srinivasa Rao, N., & Mandla, V. R. (2017). Development of regression equation to study the Total Nitrogen, Total Phosphorus and Suspended Sediment using remote sensing data in Gujarat and Maharashtra coast of India. Journal of Coastal Conservation, 21, 917–927.Article Google Scholar Mbuh, M. J., Mbih, R., & Wendi, C. (2019). Water quality modelling and sensitivity analysis using Water Quality Analysis Simulation Program (WASP) in the Shenandoah River watershed. Physical Geography, 40(2), 127–148. Google Scholar McGillicuddy, D. J., Anderson, D. M., Lynch, D. R., & Townsend, D. W. (2005). Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical-biological model. Deep-Sea Research Part II: Topical Studies in Oceanography, 52(19–21 SPEC. ISS), 2698–2714. Google Scholar Mohammed, M. A. A., Khleel, N. A. A., Szabó, N. P., & Szűcs, P. (2022). Modelling of groundwater quality index by using artificial intelligence algorithms in northern Khartoum State. Modelling Earth Systems and Environment. Google Scholar Moses, S. A., Janaki, L., Joseph, S., & Joseph, J. (2015). Water quality prediction capabilities of WASP model for a tropical lake system. Lakes and Reservoirs: Research and Management, 20(4), 285–299. CAS Google Scholar Mushtaq, F., & Nee Lala, M. G. (2017). Remote estimation of water quality parameters of Himalayan lake (Kashmir) using Landsat 8 OLI imagery. Geocarto International, 32(3), 274–285.Article Google Scholar Mushtaq, F., Nee Lala, M. G., & Mantoo, A. G. (2022). Trophic State assessment of a freshwater Himalayan Lake using Landsat 8 OLI satellite imagery: A case study of Wular Lake, Jammu and Kashmir (India). Earth. J River 제이리버에 J Remote 제이리모트 연결하기 몇달 전부터 푸바 대신 제이리버 J River를 사용중입니다.피오당 공구를 이용하여 blog.naver.com. 제이리버 J River 를 깔았으니 짝꿍으로 제이리모트 J Remote 를 깔아봅니다. Downloaded J River again on that computer. Same problem. J River is not accessible anymore. Tried on another computer where J River is installed ( Windows 7.1 - J River works normally) but tried to access with J Remote (Samsung tab). Access key added. Just got a black screen with the message J River is stopped - Report or ok as choice.Comments
17–25.Article Google Scholar Grunwald, S., & Qi, C. (2006). GIS-based water quality modelling in the Sandusky watershed, Ohio, USA. JAWRA Journal of the American Water Resources Association, 42(4), 957–973.Article CAS Google Scholar Guéguen, C., Guo, L., & Tanaka, N. (2005). Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean. Continental Shelf Research, 25(10), 1195–1207.Article Google Scholar Guo, H., Huang, J. J., Chen, B., Guo, X., & Singh, V. P. (2021). A machine learning-based strategy for estimating nonoptically active water quality parameters using Sentinel-2 imagery. International Journal of Remote Sensing, 42(5), 1841–1866.Article Google Scholar Gupta, N., Aktaruzzaman, M., & Wang, C. (2012). GIS-based assessment and Management of Nitrogen and Phosphorus in Rönneå River Catchment, Sweden. Journal of the Indian Society of Remote Sensing, 40(3), 457–466. Google Scholar Gurlin, D., Gitelson, A. A., & Moses, W. J. (2011). Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115(12), 3479–3490.Article Google Scholar Hameed, H. (2010). GIS as a tool for classification Lake’s acidification-and eutrophication degree. Mesopotamian Journal of Marine Science, 25(1), 53–64.Article Google Scholar Hiscock, J. G., Thourot, C. S., & Zhang, J. (2003). Phosphorus budget – Land use relationships for the northern Lake Okeechobee watershed, Florida. Ecological Engineering, 21(1), 63–74. Google Scholar Howartw, R. W., Billen, G., Swaney, D., & Townsend, A. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35(1), 75–139.Article Google Scholar Hu, C., Muller-karger, F. E., Judd, C., Carder, K. L., Kelble, C., Johns, E., & Heil, C. A. (2005). Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sensing of Environment, 97, 311–321. Google Scholar Izadi, M., Sultan, M., El Kadiri, R., Ghannadi, A., & Abdelmohsen, K. (2021). A remote sensing and machine learning-based approach to forecast the onset of harmful algal bloom. Remote Sensing, 13(19). A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D., & Ross, A. (2016). Integrated groundwater management: Concepts, approaches and challenges. Integrated Groundwater Management: Concepts, Approaches and Challenges, 1–762. M. A., & Jha, M. K. (2022). A novel GIS-based modelling approach for evaluating aquifer susceptibility to anthropogenic contamination. Sustainability, 14(8), 4538.Article CAS Google Scholar Jeong, S., Yeon, K., Hur, Y., & Oh, K. (2010). Salinity intrusion characteristics analysis using EFDC model in the downstream of Geum River. Journal of Environmental Sciences, 22(6), 934–939. Google Scholar Karul, C., Soyupak, S., Çilesiz, A. F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modelling. Ecological Modelling, 134(2–3), 145–152. CAS Google Scholar KC, A., Chalise, A., Parajuli, D., Dhital, N., Shrestha, S., & Kandel, T. (2019). Surface water quality assessment using remote sensing, GIS and artificial intelligence. Technical Journal, 1(1), 113–122.Article Google Scholar Kurup, R. G., Hamilton, D. P., & Phillips, R. L. (2000). Comparison of two 2-dimensional, laterally averaged hydrodynamic model applications to the Swan River Estuary. Mathematics and
2025-04-16And water pollutants in mining area. Environmental Science and Pollution Research, 29(21), 31486–31500. CAS Google Scholar Seo, D., Kim, M., & Ahn, J. H. (2012). Prediction of chlorophyll-a changes due to weir constructions in the Nakdong River using EFDC-WASP modelling. Environmental Engineering Research, 17(2), 95–102.Article Google Scholar Shabani, A., Woznicki, S. A., Mehaffey, M., Butcher, J., Wool, T. A., & Whung, P. Y. (2021). A coupled hydrodynamic (HEC-RAS 2D) and water quality model (WASP) for simulating flood-induced soil, sediment, and contaminant transport. Journal of Flood Risk Management, 14(4). Y., & Zhu, D. Z. (2001). Techniques for controlling total suspended solids in stormwater runoff. Canadian Water Resources Journal, 26(3), 359–375.Article Google Scholar Shen, L., Xu, H., & Guo, X. (2012). Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors (Switzerland), 12(6), 7778–7803. CAS Google Scholar Sheng, Z. (2013). Impacts of groundwater pumping and climate variability on groundwater availability in the Rio Grande Basin. Ecosphere, 4(1), 1–25. Google Scholar Singh, S. K., Srivastava, P. K., Pandey, A. C., & Gautam, S. K. (2013). Integrated assessment of groundwater influenced by a Confluence River system: Concurrence with remote sensing and geochemical modelling. Water Resources Management, 27(12), 4291–4313. Google Scholar Skogen, M. D., Svendsen, E., Berntsen, J., Aksnes, D., & Ulvestad, K. B. (1995). Modelling the primary production in the North Sea using a coupled three-dimensional physical-chemical-biological ocean model. Estuarine, Coastal and Shelf Science, 41(5), 545–565. CAS Google Scholar Slonecker, E. T., Jones, D. K., & Pellerin, B. A. (2016). The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM). Marine Pollution Bulletin, 107(2), 518–527.Article CAS Google Scholar Stigter, T. Y., Ribeiro, L., & Carvalho Dill, A. M. M. (2006). Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies – Two Portuguese case studies. Journal of Hydrology, 327(3–4), 578–591. Google Scholar Stumpf, R. P., Culver, M. E., Tester, P. A., Tomlinson, M., Kirkpatrick, G. J., Pederson, B. A., Truby, E., Ransibrahmanakul, V., & Soracco, M. (2003). Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae, 2(October 2001), 147–160.Article CAS Google Scholar Stumpf, R. P., & Tomlinson, M. C. (2005). Use of remote sensing in monitoring and forecasting of harmful algal blooms. Remote Sensing of the Coastal Oceanic Environment, 5885, 58850I. Google Scholar Tamene, L., Park, S. J., Dikau, R., & Vlek, P. L. G. (2006). Reservoir siltation in the semi-arid highlands of northern Ethiopia: Sediment yield–catchment area relationship and a semi-quantitative approach for predicting sediment yield. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(11), 1364–1383.Article Google Scholar Tang, D. L., Kawamura, H., Hai, D. N., & Takahashi, W. (2004). Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. Journal of Geophysical Research: Oceans, 109(3), 1–7. Google Scholar Tiwari, S., Babbar, R., & Kaur, G. (2018). Performance evaluation of two ANFIS models for predicting water quality index of River Satluj
2025-04-23(an Analytical Review); Asia Disaster Reduction Center: Kobe, Japan, 2009; p. 23. [Google Scholar]Ali, S.; Cheema, M.J.M.; Waqas, M.M.; Waseem, M.; Leta, M.K.; Qamar, M.U.; Awan, U.K.; Bilal, M.; Rahman, M.H.U. Flood Mitigation in the Transboundary Chenab River Basin: A Basin-Wise Approach from Flood Forecasting to Management. Remote Sens. 2021, 13, 3916. [Google Scholar] [CrossRef]El Gayar, A.; Hamed, Y. Climate change and water resources management in Arab countries. In Proceedings of the Euro-Mediterranean Conference for Environmental Integration, Sousse, Tunisia, 20–25 November 2017; pp. 89–91. [Google Scholar]Abdullah, M.; Al-Ansari, N.; Adamo, N.; Sissakian, V.K.; Laue, J. Floods and Flood Protection in Mesopotamia. J. Earth Sci. Geotech. Eng. 2020, 10, 155–173. [Google Scholar]Besser, H.; Hamed, Y. Environmental impacts of land management on the sustainability of natural resources in Oriental Erg Tunisia, North Africa. Environ. Dev. Sustain. 2021, 23, 11677–11705. [Google Scholar] [CrossRef]Hamdan, A.N.A.; Almuktar, S.; Scholz, M. Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River Catchment, Northern Iraq. Hydrology 2021, 8, 58. [Google Scholar] [CrossRef]Zin, W.W.; Kawasaki, A.; Takeuchi, W.; San, Z.M.L.T.; Htun, K.Z.; Aye, T.H.; Win, S. Flood hazard assessment of Bago River Basin, Myanmar. J. Disaster Res. 2018, 13, 14–21. [Google Scholar]Ameera, M.A. Hydraulic Model Development using HEC-RAS and Determination of Manning Roughness Value for Shatt Al-Rumaith. Muthanna J. Eng. Technol. 2016, 4, 9–13. [Google Scholar]Marina, I.; Oana, E.C. The Use Of HEC–RAS Modeling in Flood Risk Analysis; Carol I, No. 20; Alexandru Ioan Cuza" University, Faculty of Geography: Iași, Romania, 2015; pp. 315–322. Available online: (accessed on
2025-04-24Scholar]Abdelkarim, A. The effect of spatial changes of urban growth and land uses on increasing the risk of floods in the city of Saudi Arabia: A case study of the city of Hail using geographic information systems (GIS) and remote sensing (RS). Arab. J. Geogr. Inf. Syst. 2013, 6, 1–103. [Google Scholar]El Adlouni, S.; Bobée, B. Hydrological Frequency Analysis Using HYFRAN-PLUS Software. 2015, pp. 1–71. Available online: (accessed on 5 June 2022).Environmental Modeling Research Laboratory of Brigham Young University. Watershed Modeling System (WMS) v 8.1: Tutorials; Environmental Modeling Research Laboratory of Brigham Young University: Provo, UT, USA, 2004. [Google Scholar]Matthew, J.F. Hydrologic Modeling System HEC-HMS, Quick Start Guide; U.S Army Corps of Engineers, Hydrologic Engineering Center (HEC): St. Davis, CA, USA, 2013; Volume 4, 50p. [Google Scholar]Feldman, A.D. Hydrologic Modeling System HEC-HMS; Hydrologic Engineering Center (HEC): St. Davis, CA, USA, 2008; 155p. [Google Scholar]US Army Corps of Engineers (USACE). River Analysis System HEC-RAS: Applications Guide; Hydrologic Engineering Center (HEC): St. Davis, CA, USA, 2010. [Google Scholar]Dragan, V.K.; Ivana, B.I.; Dejan, M.C.; Gordana, O.M. The initial analysis of the river Ibar temperature downstream of the lake gazivode. Therm. Sci. 2014, 18, 73–80. [Google Scholar]Sunil, K.; Sayali, K.; Vrushali, B.; Akshada, W. Flood modeling of river godavari using hec-ras. Int. J. Res. Eng. Technol. 2014, 3, 81–87. [Google Scholar]Raymond, D.; Soussou, S.; Seidou, K.; Issa, L.; Samo, D.; Mousse, L.; Didier, M. Calibration of HEC-RAS Model for One Dimensional Steady Flow Analysis - A Case of Senegal River Estuary Downstream Diama Dam.
2025-04-24Performance evaluation of different probability distribution functions for computing Standardized Precipitation Index over diverse climates of Iran. Int J Climatol 41(5):3352–3373. Google Scholar Rousta I, Soltani M, Zhou W, Cheung H (2016) Analysis of extreme precipitation events over central plateau of Iran. Am J Clim Chang 5:297–313. Google Scholar Şen Z (2024) Standard precipitation-temperature index (SPTI) drought identification by fuzzy c-means methodology. Earth Sci Inf 17(5):4233–4244. Google Scholar Shah NH, Priamvada A, Shukla BP (2024) Decoding spatial precipitation patterns using artificial intelligence. Spat Inf Res 32(4):399–410. Google Scholar Shashika IAD, Jayantha O, Liyanage ABC, K FWCD (2024) Precipitation intensity–duration–frequency curves using cluster and regional frequency analyses. J Hydrol Eng 29(5):5024018. Google Scholar Sofro A, Riani RA, Khikmah KN, Romadhonia RW, Ariyanto D (2024) Analysis of precipitation in Indonesia using a time series-based clustering approach. BAREKENG: Jurnal Ilmu Matematika Dan Terapan 18(2):0837–0848Article Google Scholar Sun Y, Wendi D, Kim DE, Liong SY (2019) Deriving intensity–duration–frequency (IDF) curves using downscaled in situ precipitation assimilated with remote sensing data. Geosci Lett 6(1):1–12. SA, Keykhai M, Jahanbakhshi F, Sheikholeslami J, Ahmadi A, Yang H, Abbaspour KC (2019) The future of extreme climate in Iran. Sci Rep 9(1):1464. CAS Google Scholar Wambua RM (2019) Estimating precipitation intensity-duration-frequency ( Idf ) curves for a tropical river basin. Int J Adv Res Publ 3(4):99–106 Google Scholar Wdowikowski M, Kaźmierczak B, Ledvinka O (2016) Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin. Meteorol Hydrol Water Manag 4(1):53–63. Google Scholar Wutsqa DU, Khairunnisa S (2024) Mapping of flood-susceptibility areas in Bantul Regency using the fuzzy clustering ensemble method. AIP Conf Proc 2622(1):110002. Google Scholar Yang W, Xu J, Xu B, Meng W, Yang K, Fang Y (2024) Fuzzy clustering-based climatic zoning method for building climate responsiveness in Qinba region, China. J Build Eng 90:109311. Google Scholar Yuce M, Deger I (2019) Rainfall intensity-duration-frequency analysis for the city of Gaziantep. In: The international civil engineering and architecture conference. Trabzon, Turkey, pp 760–766Zeng X, Wang D, Wu J (2015) Evaluating the three methods of goodness of fit test for frequency analysis. J Risk Anal Crisis Response 5(3):178–187
2025-04-23(India). Advances in Civil Engineering, 2018. Google Scholar Troudi, N., Hamzaoui-Azaza, F., Tzoraki, O., Melki, F., & Zammouri, M. (2020). Assessment of groundwater quality for drinking purpose with special emphasis on salinity and nitrate contamination in the shallow aquifer of Guenniche (Northern Tunisia). Environmental Monitoring and Assessment, 192(10), 1–19. Google Scholar Ullrich, A., & Volk, M. (2009). Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agricultural Water Management, 96(8), 1207–1217. Google Scholar Van Soesbergen, A. J. J., & Mulligan, M. (2014). Modelling multiple threats to water security in the Peruvian Amazon using the WaterWorld policy support system. Earth System Dynamics, 5(1), 55–65. Google Scholar Vogiatzakis, I. N. (2003). GIS-based modelling and ecology: A review of tools and methods. Department of Geography, University of Reading. Google Scholar Wang, J., Chen, Z., & Wu, J. (2004). Stream water quality models and its development trend. Journal of Anhui Normal University (Natural Science), 27(3), 242–247.CAS Google Scholar Wang, P., Yao, J., Wang, G., Hao, F., Shrestha, S., Xue, B., et al. (2019). Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Science of the Total Environment, 693, 133440.Article CAS Google Scholar Wu, C., Wu, J., Qi, J., Zhang, L., Huang, H., Lou, L., & Chen, Y. (2010). Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. International Journal of Remote Sensing, 31(9), 2309–2324.Article Google Scholar Xu, F., Tao, S., Dawson, R. W., & Li, B. (2001). A GIS-based method of lake eutrophication assessment. Ecological Modelling, 144, 231–244.Article CAS Google Scholar Zeiger, S. J., Owen, M. R., & Pavlowsky, R. T. (2021). Simulating nonpoint source pollutant loading in a karst basin: A SWAT modelling application. Science of the Total Environment, 785, 147295.Article CAS Google Scholar Żelazny, M., Bryła, M., Ozga-Zielinski, B., & Walczykiewicz, T. (2023). Applicability of the WASP model in an assessment of the impact of anthropogenic pollution on water quality—Dunajec River case study. Sustainability, 15(3), 2444. Google Scholar Zhang, B., Qin, Y., Huang, M., Sun, Q., Li, S., Wang, L., & Yu, C. (2011). SD–GIS-based temporal–spatial simulation of water quality in sudden water pollution accidents. Computers and Geosciences, 37(7), 874–882.Article CAS Google Scholar Zhang, R., Qian, X., Yuan, X., Ye, R., Xia, B., & Wang, Y. (2012). Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management. International Journal of Environmental Research and Public Health, 9(12), 4504–4521.Article CAS Google Scholar Zhang, H., Xue, B., Wang, G., Zhang, X., & Zhang, Q. (2022). Deep learning-based water quality retrieval in an impounded lake using landsat 8 imagery: An application in Dongping lake. Remote Sensing, 14(18), 4505. Google Scholar Zhu, S., Zhang, Z., & Liu, X. (2017). Enhanced two dimensional hydrodynamic and water quality model (CE-QUAL-W2) for simulating mercury transport and cycling in water bodies. Water, 9(9), 643. Google Scholar Download references
2025-04-20